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Agenda 

  XT communication overview 
  Portals overview 
  Interconnect specifics 
  Interesting communication patterns 
  Wrap-up 
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XT Communication Stack 
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Portals 
  Network communication API developed by Sandia 

•  Data movement is between ‘portal’s into user address spaces 
•  Supports zero-copy, OS bypass, and Application bypass 
•  Supports one-sided communication (Get and Put) 

  Primary method of communication on XT interconect   
•  Cray extensions for:  

  CLE optimization 
  Interrupt management improvement 
  Multi-core nodes 
  Atomic operations (GetPut, GetAdd, CGetPut) 
  Network resiliency (Basic End-to-End Reliability) 

  Portals Assumptions 
•  Network is reliable and deterministic 
•  Guaranteed in-order transmission of messages between NID/PID pairs 
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Portals Structure 

•  Portal Table 
–  Anchor table for registered 

portals users 
•  Event Queue 

–  Completion/notification 
•  Match Entries 

–  Filters for in-bound 
RDMA operations 

•  Memory Descriptors 
–  Describe memory 

segments attached to 
match entries 

… 

… … 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Portals API 

•  Portal Table 
–  PtlNIInit(), PtlFini() 

•  Event Queue 
–  PtlEQAlloc() 

•  Match Entries 
–  PtlMEAttach() 

•  Memory Descriptors 
–  PtlMDAttach(), 

PtlMDBind() 
•  Data Movement 

–  PtlGet(), PtlPut() 

… 

… … 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Portals Data Transfer 

… 

… … 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Seastar Network Access Layer 

  Provides bridge between portals API and NIC 
  Manages transmit and receive state for in-flight portals 

requests 
  Works in conjunction with portals library for message 

validation and matching 
  Translates logical requests into DMA programs to be 

consumed by the NIC 
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User Transmit Request Flow 
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Providing reliable communication 

  Basic End-to-End Reliability (BEER) protocol 
  Host-resident software layer between NIC and portals 
  Provides recovery for various message transmission 

issues 
•  CAM overflow 
•  OS resource exhaustion 
•  Flow control for tx/rx imbalance and forward progress 
•  Cleanup for orphaned transmits (remote node failures, etc.) 
•  Warm reboot of nodes 

  Message sequence numbers used to manage flow 
between NID/PID pairs 
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XT System Architecture 
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Seastar connection to CPUs 
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Network Interface - Seastar 
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Embedded Processor Complex 

  PPC 440 Processor 
  384KB on-board RAM 
  Manages DMA engine 

•  Interrogates incoming requests and coordinates with host for data 
placement 

•  Keeps tx engine fed 
  Provides RAS functionality 

•  Warm reboot 
•  Host failure recovery 
•  Maintenance interface communication 
•  Seastar fault detection and recovery 
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Seastar Router 
  Connects the seastar to the 3D torus network 

•  6 network ports 
•  1 host port  

  Supports up to 32K nodes 
  Each port supports 3.25GB/s bandwidth 
  Supports cut-through routing 
  Basic flow control unit is a flit  

•  Flit contains 64 data bits + control bits 
  Flits are combined into network packets 

•  Packets consist of a header flit and up to 8 data flits 
  Hardware flow control is credit based 

•  Credits are replenished when receiving router accepts flit 
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Seastar Router 
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Seastar DMA Engine 

  Transmit Engine 
•  Single transmit DMA engine 
•  Responsible for translation of outbound block transfers into 

network flits 
•  PPC manages 32 entry TX DMA queue 
•  Price of tx = 1 credit / flit 

  Receive Engine 
•  Fed by 512 flit rx data fifo 
•  Content Addressable Memory (CAM) maps remote source to each 

of the 256 rx queues 
•  On CAM match, packet is sent to matching rx DMA stream 
•  Router credited when packet is moved from rx data fifo 
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Seastar Transmit Machinery 
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Seastar Receive Machinery 
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Key DMA Parameters 

  TX DMA 
•  Single transmit FIFO 
•  Requests are consumed in the order presented 
•  PPC responsible for feeding host requests into engine 
•  Transmit possible only when credits available at target router 

  RX DMA 
•  Single receive FIFO 
•  Small messages (<= 16 bytes) handled directly from FIFO 
•  Large messages require CAM for DMA 
•  PPC/host intervene on CAM miss 
•  Router credits returned when packet moves from FIFO 
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… 

… 

… … 

Normal message reception 
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… 

… 

…  … 

CAM Miss 
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… 

… 

…  … 

CAM Overflow 
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Problem Scenario 1 – CAM thrash 

  All-to-one  
•  Actually, > 256 to one 

  Effective throughput of the seastar decreases in direct 
proportion to the sender/receiver ratio 

•  CAM overflows induce additional chatter due to: 
  Interrupt/nak sequence 
  Message retransmission 
  Unused data flowing through rx data fifo 

  No fairness in CAM allocation scheme 
•  CAM slots are ‘sticky’, but can be resourced at the end of a 

message. 
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Scenario 2 – tx/rx imbalance 

  All-from-one (e.g., GET storm) 
•  Unrelated to CAM issues 

  GET requests arrive as single-packet requests, which do 
not require the CAM 

•  Processed directly from rx fifo 
•  Not throttled by CAM limit of 256 concurrent sources 

  REPLY DMAs fill the tx fifo and requests begin to backup 
  BEER initiates flow control when transmit resources 

become scarce 
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Scenario 3 – tx interference 

  Transmit requests serialized through Seastar 
  Large tx stream from one PE can monopolize resources 
  Transmit queue is not prioritized 

•  Don’t initiate many large low-priority (async) requests followed by a 
small, high priority request (e.g., barrier) 

  Must consider asynchronous tx activity 
•  Lustre buffer flushes 
•  Out-of-band requests (RDMA pulls) 
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Enhancements for hex-core and 
beyond 

  CAM Swapping 
•  Firmware enhancements to manage over commitment of CAM 
•  Similar in concept to TLB management 
•  Eliminates many fault-related retransmissions 

  Efficiency improvements to on-node transfers 
•  Less contention for local resources 
•  Reduced back-pressure on network 

  Core specialization 
•  Isolates jitter-related processing (e.g., system services, daemons, 

etc.) 
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Summary 

  Forward progress on the network is key 
•  Stalls/delays at one node can ripple through the network. 

  All-to-one communication comes at a price 
•  CAM pressure can reduce effective throughput 

  Tx and rx communication paths have unique 
characteristics 

  Out-of-band communication can impact application 
  Be mindful of communication resource exhaustion costs as 

application scales 


